
MATH 245 S17, Exam 2 Solutions

1. Carefully define the following terms: free variable, predicate, counterexample, Left-to-Right Principle.

A free variable is a variable that has not been bound, drawn from some domain. A predicate is a collection
of propositions, indexed by one or more free variables, each drawn from its domain. A counterexample is a
specific domain element chosen to make a predicate false. The Left-to-Right Principle states that variables
are bound from left to right.

2. Carefully define the following terms: Uniqueness Proof Theorem, Proof by Contradiction Theorem, Proof
by Induction Theorem, well-ordered set.

The Uniqueness Proof theorem states: there is at most one domain element satisfying predicate P if ∀x, y ∈
D,P (x) ∧ P (y)→ x = y. The Proof by Contradiction theorem states: For propositions p, q, if (p ∧ ¬q) ≡ F ,
then p → q is true. The Proof by Induction theorem states: To prove ∀x ∈ N, P (x), we prove (a) P (1) is
true; and (b) ∀x ∈ N, P (x)→ P (x + 1).

3. Simplify ¬(∃x, ∀y,∀z, (x < y)→ (x < z)) as much as possible (i.e. where nothing is negated). Do not prove
or disprove this statement.

∀x,∃y,∃z, (x < y) ∧ (x ≥ z), or (nicer) ∀x,∃y,∃z, z ≤ x < y.

4. Recall that R \Q is the set of irrational numbers. Let a ∈ R \Q, b ∈ Q. Use proof by contradiction to prove
that a + b ∈ R \Q.

Because b ∈ Q, there are integers m,n with n 6= 0 and b = m
n . Now, assume by way of contradiction that

a+b ∈ Q. Then there are integers s, t with t 6= 0 and a+b = s
t . We calculate a = (a+b)−b = s

t −
m
n = sn−mt

nt .
Now, sn−mt, nt are integers, and nt 6= 0, so a ∈ Q. This is a contradiction.

5. Prove or disprove: ∀x ∈ R,∀y ∈ R, (x < y)→ dxe ≤ byc.
The statement is false. To prove this, we need to prove ∃x ∈ R,∃y ∈ R, (x < y) ∧ (dxe > byc). Take
x = 0.3, y = 0.4. We have x < y but dxe = 1 > 0 = byc. Many other x, y are possible.

6. Let n ∈ Z. Use the Division Algorithm to prove that (n−1)(n+2)
2 ∈ Z.

Apply DA to get integers q, r with n = 2q + r, and 0 ≤ r < 2. We now have two cases. If r = 0, then
(n−1)(n+2)

2 = (n−1)(2q+0+2)
2 = (n− 1)q ∈ Z. If instead r = 1, then (n−1)(n+2)

2 = (2q+1−1)(n+2)
2 = q(n+ 2) ∈ Z.

7. Recall the Fibonacci numbers given by F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (for n ≥ 2). Prove that for all
n ∈ N0, Fn+2 = 1 +

∑n
i=0 Fi.

Base case n = 0: F2 = 1 = 1+F0+F1. Inductive case: Let n ∈ N0 and assume that Fn+2 = 1+
∑n

i=0 Fi. Add

Fn+1 to both sides: Fn+3 = Fn+1 +Fn+2 = Fn+1 + 1 +
∑n

i=0 Fi = 1 +
∑n+1

i=0 Fi. Hence Fn+3 = 1 +
∑n+1

i=0 Fi.

8. Let x ∈ R. Prove that bxc exists. That is, prove ∃n ∈ Z, n ≤ x < n + 1.

Let S be the set of all integers less than or equal to x. This is a nonempty set, with an upper bound (x), so by
the Maximum Element Induction theorem, there is some maximum element n ∈ S. Since n ∈ S, n ≥ x. We
now prove x < n + 1. Assume, by way of contradiction, that x ≥ n + 1. But then n + 1 ∈ S, and n + 1 > n,
a contradiction since n was a maximum. Hence n ≤ x < n + 1.

9. Use induction to prove ∀n ∈ N, (2n)!
n!n! ≥ 2n.

Base case n = 1: 2!
1!1! = 2 ≥ 21. Inductive case: Let n ∈ N, and assume that (2n)!

n!n! ≥ 2n. Multiply both sides by
(2n+1)(2n+2)
(n+1)(n+1) to get (2(n+1))!

(n+1)!(n+1)! = (2n)!
n!n!

(2n+1)(2n+2)
(n+1)(n+1) ≥ 2n (2n+1)(2n+2)

(n+1)(n+1) = 2n (2n+1)2(n+1)
(n+1)(n+1) = 2n+1 2n+1

n+1 ≥ 2n+1.

Hence (2(n+1))!
(n+1)!(n+1)! ≥ 2n+1

10. Let R+ denote the positive real numbers. Prove that ∀a ∈ R+, ∃b ∈ R+, ∀x ∈ R, |x− 2| < b→ |3x− 6| < a.

Let a ∈ R+ be arbitrary. Choose b = a
3 . Now, let x ∈ R with |x−2| < b. We have |x−2| < b = a

3 . Multiplying
both sides by 3, we get |3x− 6| = 3|x− 2| < a. Hence |3x− 6| < a. This proves that limx→2 3x = 6; to learn
much more like this, take Math 534A.


