MATH 245 S17, Exam 2 Solutions

1. Carefully define the following terms: free variable, predicate, counterexample, Left-to-Right Principle.

A free variable is a variable that has not been bound, drawn from some domain. A predicate is a collection of propositions, indexed by one or more free variables, each drawn from its domain. A counterexample is a specific domain element chosen to make a predicate false. The Left-to-Right Principle states that variables are bound from left to right.
2. Carefully define the following terms: Uniqueness Proof Theorem, Proof by Contradiction Theorem, Proof by Induction Theorem, well-ordered set.
The Uniqueness Proof theorem states: there is at most one domain element satisfying predicate P if $\forall x, y \in$ $D, P(x) \wedge P(y) \rightarrow x=y$. The Proof by Contradiction theorem states: For propositions p, q, if $(p \wedge \neg q) \equiv F$, then $p \rightarrow q$ is true. The Proof by Induction theorem states: To prove $\forall x \in \mathbb{N}, P(x)$, we prove (a) $P(1)$ is true; and (b) $\forall x \in \mathbb{N}, P(x) \rightarrow P(x+1)$.
3. Simplify $\neg(\exists x, \forall y, \forall z,(x<y) \rightarrow(x<z))$ as much as possible (i.e. where nothing is negated). Do not prove or disprove this statement.
$\forall x, \exists y, \exists z,(x<y) \wedge(x \geq z)$, or (nicer) $\forall x, \exists y, \exists z, z \leq x<y$.
4. Recall that $\mathbb{R} \backslash \mathbb{Q}$ is the set of irrational numbers. Let $a \in \mathbb{R} \backslash \mathbb{Q}, b \in \mathbb{Q}$. Use proof by contradiction to prove that $a+b \in \mathbb{R} \backslash \mathbb{Q}$.
Because $b \in \mathbb{Q}$, there are integers m, n with $n \neq 0$ and $b=\frac{m}{n}$. Now, assume by way of contradiction that $a+b \in \mathbb{Q}$. Then there are integers s, t with $t \neq 0$ and $a+b=\frac{s}{t}$. We calculate $a=(a+b)-b=\frac{s}{t}-\frac{m}{n}=\frac{s n-m t}{n t}$. Now, $s n-m t, n t$ are integers, and $n t \neq 0$, so $a \in \mathbb{Q}$. This is a contradiction.
5. Prove or disprove: $\forall x \in \mathbb{R}, \forall y \in \mathbb{R},(x<y) \rightarrow\lceil x\rceil \leq\lfloor y\rfloor$.

The statement is false. To prove this, we need to prove $\exists x \in \mathbb{R}, \exists y \in \mathbb{R},(x<y) \wedge(\lceil x\rceil>\lfloor y\rfloor)$. Take $x=0.3, y=0.4$. We have $x<y$ but $\lceil x\rceil=1>0=\lfloor y\rfloor$. Many other x, y are possible.
6. Let $n \in \mathbb{Z}$. Use the Division Algorithm to prove that $\frac{(n-1)(n+2)}{2} \in \mathbb{Z}$.

Apply DA to get integers q, r with $n=2 q+r$, and $0 \leq r<2$. We now have two cases. If $r=0$, then $\frac{(n-1)(n+2)}{2}=\frac{(n-1)(2 q+0+2)}{2}=(n-1) q \in \mathbb{Z}$. If instead $r=1$, then $\frac{(n-1)(n+2)}{2}=\frac{(2 q+1-1)(n+2)}{2}=q(n+2) \in \mathbb{Z}$.
7. Recall the Fibonacci numbers given by $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$ (for $n \geq 2$). Prove that for all $n \in \mathbb{N}_{0}, F_{n+2}=1+\sum_{i=0}^{n} F_{i}$.
Base case $n=0: F_{2}=1=1+F_{0}+F_{1}$. Inductive case: Let $n \in \mathbb{N}_{0}$ and assume that $F_{n+2}=1+\sum_{i=0}^{n} F_{i}$. Add F_{n+1} to both sides: $F_{n+3}=F_{n+1}+F_{n+2}=F_{n+1}+1+\sum_{i=0}^{n} F_{i}=1+\sum_{i=0}^{n+1} F_{i}$. Hence $F_{n+3}=1+\sum_{i=0}^{n+1} F_{i}$.
8. Let $x \in \mathbb{R}$. Prove that $\lfloor x\rfloor$ exists. That is, prove $\exists n \in \mathbb{Z}, n \leq x<n+1$.

Let S be the set of all integers less than or equal to x. This is a nonempty set, with an upper bound (x), so by the Maximum Element Induction theorem, there is some maximum element $n \in S$. Since $n \in S, n \geq x$. We now prove $x<n+1$. Assume, by way of contradiction, that $x \geq n+1$. But then $n+1 \in S$, and $n+1>n$, a contradiction since n was a maximum. Hence $n \leq x<n+1$.
9. Use induction to prove $\forall n \in \mathbb{N}, \frac{(2 n)!}{n!n!} \geq 2^{n}$.

Base case $n=1: \frac{2!}{1!1!}=2 \geq 2^{1}$. Inductive case: Let $n \in \mathbb{N}$, and assume that $\frac{(2 n)!}{n!n!} \geq 2^{n}$. Multiply both sides by $\frac{(2 n+1)(2 n+2)}{(n+1)(n+1)}$ to get $\frac{(2(n+1))!}{(n+1)!(n+1)!}=\frac{(2 n)!}{n!n!} \frac{(2 n+1)(2 n+2)}{(n+1)(n+1)} \geq 2^{n} \frac{(2 n+1)(2 n+2)}{(n+1)(n+1)}=2^{n} \frac{(2 n+1) 2(n+1)}{(n+1)(n+1)}=2^{n+1} \frac{2 n+1}{n+1} \geq 2^{n+1}$. Hence $\frac{(2(n+1))!}{(n+1)!(n+1)!} \geq 2^{n+1}$
10. Let \mathbb{R}^{+}denote the positive real numbers. Prove that $\forall a \in \mathbb{R}^{+}, \exists b \in \mathbb{R}^{+}, \forall x \in \mathbb{R},|x-2|<b \rightarrow|3 x-6|<a$.

Let $a \in \mathbb{R}^{+}$be arbitrary. Choose $b=\frac{a}{3}$. Now, let $x \in \mathbb{R}$ with $|x-2|<b$. We have $|x-2|<b=\frac{a}{3}$. Multiplying both sides by 3 , we get $|3 x-6|=3|x-2|<a$. Hence $|3 x-6|<a$. This proves that $\lim _{x \rightarrow 2} 3 x=6$; to learn much more like this, take Math 534A.

